leetcode--Largest Rectangle in Histogram

本文介绍了一种高效算法,用于解决直方图中寻找最大矩形面积的问题。该算法利用两个栈,分别存储未完全计算的高度及对应索引,通过巧妙地处理递增序列,避免重复计算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Given n non-negative integers representing the histogram's bar height where the width of each bar is 1, find the area of largest rectangle in the histogram.


Above is a histogram where width of each bar is 1, given height = [2,1,5,6,2,3].


The largest rectangle is shown in the shaded area, which has area = 10 unit.

For example,
Given height = [2,1,5,6,2,3],

return 10.

题意:求连续的最大矩形。

分类:数组,栈

解法1:

 此解法的核心思想为:一次性计算连续递增的区间的最大面积,并且考虑完成这个区间之后,考虑其前、后区间的时候,不会受到任何影响。也就是这个连续递增区间的最小高度大于等于其前、后区间。

这个方法非常巧妙,最好通过一个图来理解:

假设输入直方图为:int[] height = {2,7,5,6,4}.

这个方法运行的时候,当遇到height[2] == 5的时候,发现其比之前一个高度小,则从当前值(5)开始,向左搜索比当前值小的值。当搜索到最左边(2)时,比5小,此时计算在height[0]和height[2]之间的最大面积,注意不包括height[0]和和height[2]。height[1]以红色标出的这个区域就被计算完成。同样的方法,计算出绿色和粉色的面积。

因此这个方法需要使用两个栈。第一个栈为高度栈heightStack,用于记录还没有被计算过的连续递增的序列的值。第二个栈为下标栈indexStack,用于记录高度栈中对应的每一个高度的下标,以计算宽度。

算法具体执行的步骤为:

若heightStack为空或者当前高度大于heightStack栈顶,则当前高度和当前下标分别入站(下面有一个解法可以只用一个栈即可,用栈来保存下标,而高度由下标很容易得到)。所以heightStack记录了一个连续递增的序列。

若当前高度小于heightStack栈顶,heightStack和indexStack出栈,直到当前高度大于等于heightStack栈顶。出栈时,同时计算区间所形成的最大面积。注意计算完之后,当前值入栈的时候,其对应的下标应该为最后一个从indexStack出栈的下标。比如height[2]入栈时,其对应下标入栈应该为1,而不是其本身的下标2。如果将其本身下标2入栈,则计算绿色区域的最大面积时,会忽略掉红色区域。

public class Solution {
    public int largestRectangleArea(int[] height) {
        int len = height.length;
        int area = 0;
        Stack<Integer> heightStack = new Stack<Integer>();
        Stack<Integer> indexStack = new Stack<Integer>();
        for(int i=0;i<len;i++){
            if(heightStack.isEmpty()||height[i]>=height[i-1]){
                heightStack.push(height[i]);
                indexStack.push(i);
            }else{
                int j = 0;  
                while (!heightStack.empty() && heightStack.peek() > height[i]) {  
                    j = indexStack.pop();  
                    int currArea = (i - j) * heightStack.pop();  
                    if (currArea > area) {  
                        area = currArea;  
                    }  
                }  
                heightStack.push(height[i]);  
                indexStack.push(j); 
            }
        }
        while (!heightStack.empty()) {  
            int currArea = (height.length - indexStack.pop()) * heightStack.pop();  
            if (currArea > area) {  
              area = currArea;  
            }  
        }  
        return area;
    }
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值