[Leetcode] 71, 32, 84

71. Simplify Path

Given an absolute path for a file (Unix-style), simplify it.

For example,
path = "/home/", => "/home"
path = "/a/./b/../../c/", => "/c"

Corner Cases:

  • Did you consider the case where path = "/../"?
    In this case, you should return "/".
  • Another corner case is the path might contain multiple slashes '/' together, such as "/home//foo/".
    In this case, you should ignore redundant slashes and return "/home/foo".

Solution: 使用 "/" 作为分隔符将两个 "/" 之间的内容分割出来,分别进行判断,先使用vector记录方便进入上一个目录,最后放入string中。

Code:

class Solution {
public:
    string simplifyPath(string path) {
        vector<string> simpath;;
        int lastsize = -1;
        int i = 0;
        while(path[i]){
            //根据分隔符分隔出一个文件夹名称
            int t = 0;
            for(int j=i+1; path[j] && path[j]!='/'; j++) t++;
            if(t==0){
                i = i+1;
                continue;
            }
            string name = path.substr(i+1,t);
            if(name==".."){
                //回到上一层
                if(!simpath.empty()) simpath.pop_back();
            }else if(name!="."){
                simpath.push_back(name);
            }
            i = i+t+1;
        }
        string ans = "";
        for(int i=0; i<simpath.size(); i++){
            ans += "/"+simpath[i];
        }
        if(ans=="") ans = "/";
        return ans;
    }
};


32. Longest Valid Parentheses

Given a string containing just the characters '(' and ')', find the length of the longest valid (well-formed) parentheses substring.

For "(()", the longest valid parentheses substring is "()", which has length = 2.

Another example is ")()())", where the longest valid parentheses substring is "()()", which has length = 4.

Solution: 使用两个stack,一个用来记录剩下的未匹配的char,另一个用来记录到这个char之前有多长的合法parentheses,假如能成功匹配这个char,那么当前长度需要加上前面匹配到的长度。

Code:

class Solution {
public:
    int longestValidParentheses(string s) {
        
        unordered_map<char,char> m;
        m[')'] = '(';
        
        stack<char> container;
        stack<int> ans;
        int curans = 0;
        for(int i=0; s[i]; i++){
            if(container.empty()){
                container.push(s[i]);
                ans.push(curans);
                curans = 0;
            }else{
                if(m[s[i]]==container.top()){
                    container.pop();
                    curans += ans.top() + 2;
                    ans.pop();
                }else{
                    container.push(s[i]);
                    ans.push(curans);
                    curans = 0;
                }
            }
        }
        while(!ans.empty()){
            if(ans.top()>curans) curans = ans.top();
            ans.pop();
        }
        return curans;
    }
};


84. Largest Rectangle in Histogram

Given n non-negative integers representing the histogram's bar height where the width of each bar is 1, find the area of largest rectangle in the histogram.


Above is a histogram where width of each bar is 1, given height = [2,1,5,6,2,3].


The largest rectangle is shown in the shaded area, which has area = 10 unit.

For example,
Given heights = [2,1,5,6,2,3],
return 10.

Solution: 最直观的做法是对一个柱向左右两边扩展直至找到比它矮的柱停止,然后记录下每个柱的最大面积,时间复杂度是O(n^2)超时。因此这里利用stack来解,具体解法参考:http://www.cnblogs.com/ganganloveu/p/4148303.html

1、如果已知height数组是升序的,应该怎么做?

比如1,2,5,7,8

那么就是(1*5) vs. (2*4) vs. (5*3) vs. (7*2) vs. (8*1)

也就是max(height[i]*(size-i))

2、使用栈的目的就是构造这样的升序序列,按照以上方法求解。

Code:

class Solution {
public:
    int largestRectangleArea(vector<int>& heights) {
        if(heights.size()==0) return 0;
        
        stack<int> h;
        h.push(heights[0]);
        int max = 0;
        for(int i=1; i<heights.size(); i++){
            int t = 0;
            //中间被pop掉的几个,因为也是有序的,因此可以用同样的方法直接计算最大面积
            while(!h.empty() && h.top()>heights[i]){
                t++;
                if(h.top()*t>max) max = h.top()*t;
                h.pop();
            }
            while(t>=0){
                h.push(heights[i]);
                t--;
            }
        }
        int i = 0;
        while(!h.empty()){
            i++;
            if(h.top()*i>max) max = h.top()*i;
            h.pop();
        }
        return max;
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值