Python自然语言处理:词干、词形与MaxMatch算法

本文介绍了自然语言处理中的词干提取和词形还原,探讨了Porter Stemmer和Lancaster Stemmer两种词干提取方法,并详细解释了词形还原的含义。同时,文章重点阐述了MaxMatch算法在中文分词中的应用,强调其在确保分词准确性中的重要性,以及如何结合Lemmatisation进行词汇匹配。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

自然语言处理中一个很重要的操作就是所谓的stemming 和 lemmatization,二者非常类似。它们是词形规范化的两类重要方式,都能够达到有效归并词形的目的,二者既有联系也有区别。

1、词干提取(stemming)

定义:Stemming is the process for reducing inflected (or sometimes derived) words to their stem, base or root form—generally a written word form.

解释一下,Stemming 是抽取词的词干或词根形式(不一定能够表达完整语义)。

NLTK中提供了三种最常用的词干提取器接口,即 Porter stemmer, Lancaster Stemmer 和 Snowball Stemmer。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

白马负金羁

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值