UVA 10739 String to Palindrome(dp)

本文探讨如何通过添加、删除或替换字符将任意给定的字符串转化为回文串,并详细解释了实现这一目标的算法过程及核心思路。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Problem H
String to Palindrome

Input: Standard Input

Output: Standard Output

Time Limit: 1 Second

 

In this problem you are asked to convert a string into a palindrome with minimum number of operations. The operations are described below:

 

Here you’d have the ultimate freedom. You are allowed to:

  • Add any character at any position
  • Remove any character from any position
  • Replace any character at any position with another character

Every operation you do on the string would count for a unit cost. You’d have to keep that as low as possible.

 

For example, to convert “abccda” you would need at least two operations if we allowed you only to add characters. But when you have the option to replace any character you can do it with only one operation. We hope you’d be able to use this feature to your advantage.

 

Input
The input file contains several test cases. The first line of the input gives you the number of test cases, T (1≤T≤10). Then T test cases will follow, each in one line. The input for each test case consists of a string containing lower case letters only. You can safely assume that the length of this string will not exceed 1000 characters.

 

Output

For each set of input print the test case number first. Then print the minimum number of characters needed to turn the given string into a palindrome.

 

Sample Input                               Output for Sample Input

6
tanbirahmed
shahriarmanzoor
monirulhasan
syedmonowarhossain
sadrulhabibchowdhury
mohammadsajjadhossain

Case 1: 5

Case 2: 7

Case 3: 6

Case 4: 8

Case 5: 8

Case 6: 8


题意:给定一个字符串,可以进行添加,删除,和替换操作,求最少操作数使得该串变成回文串。

思路:i,j作为字符串的头尾。添加和删除操作其实是一样的。所以只需要考虑2种状态的转移了。

状态转移方程如果str[i] == str[j]则满足回文不用转换。dp[i][j] = dp[i + 1][j - 1]

如果不相等:dp[i][j] = min(min(dp[i + 1][j], dp[i][j - 1]), dp[i + 1][j - 1]) + 1

由于是递推。所以要从后往前。

代码:

#include <stdio.h>
#include <string.h>

int t, i, j, dp[1005][1005], len;
char sb[1005];

int min(int a, int b) {
	return a < b ? a : b;
}

int main() {
	scanf("%d%*c", &t);
	int tt = 1;
	while (t --) {
		memset(dp, 0, sizeof(dp));
		gets(sb);
		len = strlen(sb);
		for (i = len - 1; i >= 0; i --) {
			for (j = i + 1; j < len; j ++) {
				if (sb[i] == sb[j])
					dp[i][j] = dp[i + 1][j - 1];
				else
					dp[i][j] = min(min(dp[i + 1][j], dp[i][j - 1]), dp[i + 1][j - 1]) + 1;
			}
		}
		printf("Case %d: %d\n", tt ++, dp[0][len - 1]);
	}
	return 0;
}



内容概要:本文详细探讨了基于MATLAB/SIMULINK的多载波无线通信系统仿真及性能分析,重点研究了以OFDM为代表的多载波技术。文章首先介绍了OFDM的基本原理和系统组成,随后通过仿真平台分析了不同调制方式的抗干扰性能、信道估计算法对系统性能的影响以及同步技术的实现与分析。文中提供了详细的MATLAB代码实现,涵盖OFDM系统的基本仿真、信道估计算法比较、同步算法实现和不同调制方式的性能比较。此外,还讨论了信道特征、OFDM关键技术、信道估计、同步技术和系统级仿真架构,并提出了未来的改进方向,如深度学习增强、混合波形设计和硬件加速方案。; 适合人群:具备无线通信基础知识,尤其是对OFDM技术有一定了解的研究人员和技术人员;从事无线通信系统设计与开发的工程师;高校通信工程专业的高年级本科生和研究生。; 使用场景及目标:①理解OFDM系统的工作原理及其在多径信道环境下的性能表现;②掌握MATLAB/SIMULINK在无线通信系统仿真中的应用;③评估不同调制方式、信道估计算法和同步算法的优劣;④为实际OFDM系统的设计和优化提供理论依据和技术支持。; 其他说明:本文不仅提供了详细的理论分析,还附带了大量的MATLAB代码示例,便于读者动手实践。建议读者在学习过程中结合代码进行调试和实验,以加深对OFDM技术的理解。此外,文中还涉及了一些最新的研究方向和技术趋势,如AI增强和毫米波通信,为读者提供了更广阔的视野。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值